Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Marine plastic pollution is a global issue, with microplastics (1 μm–5 mm) dominating the measured plastic count1,2. Although microplastics can be found throughout the oceanic water column3,4, most studies collect microplastics from surface waters (less than about 50-cm depth) using net tows5. Consequently, our understanding of the microplastics distribution across ocean depths is more limited. Here we synthesize depth-profile data from 1,885 stations collected between 2014 and 2024 to provide insights into the distribution and potential transport mechanisms of subsurface (below about 50-cm depth, which is not usually sampled by traditional practices3,6) microplastics throughout the oceanic water column. We find that the abundances of microplastics range from 10−4 to 104 particles per cubic metre. Microplastic size affects their distribution; the abundance of small microplastics (1 μm to 100 μm) decreases gradually with depth, indicating a more even distribution and longer lifespan in the water column compared with larger microplastics (100 μm to 5,000 μm) that tend to concentrate at the stratified layers. Mid-gyre accumulation zones extend into the subsurface ocean but are concentrated in the top 100 m and predominantly consist of larger microplastics. Our analysis suggests that microplastics constitute a measurable fraction of the total particulate organic carbon, increasing from 0.1% at 30 m to 5% at 2,000 m. Although our study establishes a global benchmark, our findings underscore that the lack of standardization creates substantial uncertainties, making it challenging to advance our comprehension of the distribution of microplastics and its impact on the oceanic environment.more » « lessFree, publicly-accessible full text available April 30, 2026
-
Sustained observations are required to determine the marine plastic debris mass balance and to support effective policy for planning remedial action. However, observations currently remain scarce at the global scale. A satellite remote sensing system could make a substantial contribution to tackling this problem. Here, we make initial steps towards the potential design of such a remote sensing system by: (1) identifying the properties of marine plastic debris amenable to remote sensing methods and (2) highlighting the oceanic processes relevant to scientific questions about marine plastic debris. Remote sensing approaches are reviewed and matched to the optical properties of marine plastic debris and the relevant spatio-temporal scales of observation to identify challenges and opportunities in the field. Finally, steps needed to develop marine plastic debris detection by remote sensing platforms are proposed in terms of fundamental science as well as linkages to ongoing planning for satellite systems with similar observation requirements.more » « less
-
Abstract Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (bothin situand in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales.more » « less
An official website of the United States government
